
MINIX4RT: Real-Time Semaphores

Pablo A. Pessolani

Departamento de Sistemas de Información

Facultad Regional Santa Fe - Universidad Tecnológica Nacional

ppessolani@hotmail.com

Abstract

MINIX4RT is an extension of the well-known MINIX Operating System that adds Hard Real-Time services in a

new microkernel but keeping backward compatibility with standard MINIX versions.

Semaphores are the primitive synchronization and mutual exclusion mechanism in many operating systems, but

MINIX does not supply those facilities. Semaphores were added to MINIX4RT, and because it is a Real-Time

Operating System, they must meet some processing requirements as dequeueing of waiting processes in priority

order and avoiding the Priority Inversion problem. This article describes the Real-Time Semaphores facilities

available on MINIX4RT, its design, implementation, performance tests and their results.

Keywords: Real-Time, Semaphores, Priority Inheritance, Priority Inversion.

Resumen

MINIX4RT es una extensión del conocido Sistema Operativo MINIX que incorpora servicios de Tiempo Real

Estricto en un nuevo microkernel pero manteniendo compatibilidad con las versiones anteriores del MINIX

estándar.

Los semáforos son el mecanismo primitivo para la sincronización y exclusion mutua en varios sistemas

operativos, pero MINIX no brinda esa facilidad. Se adicionaron semáforos a MINIX4RT y, como éste es un

Sistema Operativo de Tiempo Real, deben reunir ciertos requisitos de procesamiento tal como priorizar la

remoción de procesos de las colas de espera y evitar el problema de Inversion de Prioridades. El presente artículo

describe las facilidades de Semáforos de Tiempo-Real disponibles en MINIX4RT, su diseño, implementación,

tests de desempeño y sus resultados.

Keywords: Tiempo Real, Semáforos, Herencia de Prioridades, Inversión de Prioridades.

1 INTRODUCTION

Real-Time Operating System (RTOS) services must consume a limited and guaranteed amounts of

time. That deterministic timing behavior is the key difference against time sharing Operating

Systems (OS).

MINIX4RT (previously named RT-MINIXv2) [1, 2] is a Real-Time (RT) version of the well known

MINIX 2.0.2 [3] Operating System designed to teach concepts on RT-programming, in particular,

those related to RT-kernels; but it can be usable as a serious system on resource-limited computers.

It is a good tool to experiment with novel OS policies and mechanisms, and to evaluate the impact

of architectural innovations.

The design constrains for MINIX4RT were:

- Compatibility with MINIX: All processes that run on MINIX must run on MINIX4RT

without modifications and sensible performance impact.

- Minimal MINIX source code changes: As MINIX is often used in OS design courses,

students have deep knowledge of its source code. Reducing the source code changes keep

the student’s experience to learn a MINIX based RTOS. Most new code must be added in

separated functions with few changes in the original MINIX code. This constrain also

helps for easier system updates for newer MINIX versions.

- Source Code readability: As MINIX4RT is focused for academic uses, its source code

must be easily understood, perhaps sacrificing performance.

MINIX uses message passing as its central paradigm because it has a Client/Server microkernel

based architecture.The messages have fixed sizes and strict copy to value semantics. In OS without

Virtual Memory as MINIX, a message transfer implies a copy of the message from the sender's

process address space to the destination's process address space. Because the copy is a time-

consuming operation, it reduces the performance of simple synchronization or mutual exclusion

primitives. Semaphores have a lower performance cost because they do not need that copy.

Furthermore, as every operation in a hard RTOS, MINIX4RT RT-Semaphore primitives need to

have deterministic execution and blocking times.

The rest of this work is organized as follows. Section 2 introduces on MINIX4RT. Section 3

presents background information about synchronization and mutual exclusion primitives on

MINIX. Section 4 presents the proposed RT-Semaphore model. Section 5 is about RT-Semaphores

basic data structures. Section 6 describes kernel primitives to operate on RT-Semaphores.

Performance evaluation is presented in Section 7. Finally, Section 8 presents conclusions and future

works.

2 OVERVIEW OF MINIX4RT

MINIX4RT provides the capability of running Real-Time and Non Real-Time (NRT) processes on

the same machine [1]. The RT-processes are executed when necessary no matter what MINIX is

doing.

The RT-microkernel works by treating the MINIX OS kernel as a task been executed under a small

RTOS based on software emulation of interrupt control hardware. In fact, MINIX is like the idle

process for the RT-microkernel been executed only when there are not any RT-processes to run.

When MINIX requests the hardware to disable interrupts, the RT-microkernel intercepts that

request, records it, and returns to MINIX. If one of those “disabled” interrupts occurs, the RT-

microkernel records its occurrence and returns without executing the MINIX interrupt handler.

Later, when MINIX requests the hardware to enable interrupts, the RT-microkernel intercepts that

request and executes all previously "disabled" handlers with recorded interrupts. This emulation

avoid that MINIX can disable RT-interrupts imposing long latencies to the execution of RT-

interrupt service routines and RT-processes.

The major features of MINIX4RT are summarized as follows:

Layered Architecture: MINIX4RT has a layered architecture that helps to change a component
without affecting the others [1].

Real-Time Sub-kernel: A RT-microkernel that deals with interrupts, Interprocess Communications
(IPC), time management and scheduling is installed below MINIX kernel. The advantage of using a

microkernel for RTOS is that the preemptability is better, the size of the kernel becomes much

smaller, and the addition/removal of services is easier [1].

Timer/Event Driven Interrupt Management: Device Driver writers can choice among two
strategies of RT-Interrupt management [1].

Fixed Priority Hardware Interrupt Processing: A priority can be assigned to each hardware
interrupt that let service then in priority order [1].

Two Stages Interrupt Handling: Interrupt can be serviced in two stages. The hardware interrupt
handler (inside interrupt time) performs the first part of the needed work and a software Interrupt

handler (outside interrupt time) does the remaining work [1].

Fixed Priority Real-Time Scheduling: Each process has an assigned priority. The RT-kernel
schedules them in priority order with preemption [2].

Periodic and Non-Periodic RT-processing: A period can be specified for a periodic process; the
RT-microkernel schedules it on period expiration [2].

Process and Interrupt Handlers Deadline Expiration Watchdogs: The use of watchdog
processes is a common use strategy to deal with malfunctioning RT-processes. When a process does

not perform its regular function in a specified time (deadline) another process (watchdog) is

signaled to take corrective actions [2].

Timer Resolution Management Detached from MINIX Timer: A Timer interrupt of 50 Hz is
emulated for the MINIX kernel even though the hardware Timer interrupt has a higher frequency

[4].

Software Timers: There are system facilities named Virtual Timers (VT) used for time-related
purposes as alarms, timeouts, periodic processing, etc. One particular feature of MINIX4RT is that

it handles software timer actions in priority order [4].

Real-Time Interprocess Communications: MINIX4RT IPC uses unidirectional communication
channels called Message Queues that handle messages in priority order and guarantee message

delivery in a timely fashion and avoid the Priority Inversion problem [5].

Statistics and Real-Time Metrics: There are several facilities to gather information about the
system status and performance.

Only NRT-process can be created and terminated under MINIX4RT. The RT-kernel does not add

new System Calls to create RT-processes. On the other hand, a NRT-process is converted into a

RT-process using the mrt_set2rt() System Call. Therefore a RT-process is managed by the RT-

kernel and blocked for the MINIX kernel and, a NRT-process is managed by the MINIX kernel and

blocked for the RT-kernel. Before converting a process, several parameters (as priority, period,

watchdog process, etc.) must be passed to the RT-kernel using the mrt_setpattr() System Call.

3 SYNCHRONIZATION AND MUTUAL EXCLUSION ON MINIX

Rendesvous Message Transfer is the basic mechanism that MINIX uses to communicate,

synchronize and make mutual exclusion among Tasks, Servers and Users’ processes, and to notify

hardware interrupt occurrence.

Those primitives are implemented as the following kernel functions[3]:

- mini_send(caller, destination, msg): If the destination process is blocked waiting for

that message from the caller, the message is copied from the caller’s message buffer

pointed by msg to the destination’s message buffer, otherwise the caller process is

blocked.

- mini_rec(caller, sender, msg): If the sender process is blocked trying to send a

message to the caller process, the message is copied from the sender’s buffer to the buffer

pointed by msg and the sender process is unblocked, otherwise the caller process is

blocked.

4 MINIX4RT SEMAPHORE MODEL

A semaphore is a kernel object that one or more processes can acquire or release for the purposes of

synchronization or mutual exclusion. They constitutes the classic method for restricting access to

shared resources in a multiprogramming environment. In a RT-environment semaphore operations

need to have deterministic execution and blocking times.

MINIX4RT RT-Semaphores are implemented inside the RT-microkernel and do not use any

MINIX IPC primitives because:

- mini_send() and mini_rec() kernel functions could change the caller’s RT-process to a

READY state for the MINIX kernel, therefore would be selected to execute by its NRT-

scheduler ignoring all its RT-execution attributes.

- If a RT-process makes a request to a NRT-process using mini_send(), the RT-process

must wait for the reply from the NRT-process running at NRT-priority. This behavior

could produce an Unbounded Priority Inversion (explained in Section 6).

In the same manner, RT-processes are inhibited of making any MINIX System Calls (except exit())

because the use MINIX IPC primitives. For this reason, MINIX4RT offers two sets of facilities:

System Calls: To be used by NRT-processes to set the RT-environment or to get RT-statistics.

These System Calls use MINIX primitives and does not have timing constraints.

Kernel Calls: To be used by RT-processes to provide RT-services. These Kernel Calls does not use

MINIX primitives and does have timing constraints.

MINIX4RT Semaphores have the following features:

- Configurable dequeueing policy (Priority order or FIFO order).

- Basic Priority Inheritance Protocol (BPIP) support to avoid Unbounded Priority

Inversion [6].

- Statistical counters of ups (also known as signal) and downs (also known as wait)

operations on the semaphore.

- Timeout support.

To eliminate the allocation delay, the RT-kernel reserves a memory space (called the System

Semaphore Pool) where semaphore objects are stored.

5 RT-SEMAPHORE DATA STRUCTURES

MINIX4RT defines new data structures to operate with RT-Semaphores. It defines RT-kernel data

structures and Userspace data structures as are described in the following sections.

5.1 RT-Semaphore Kernel Data Structure

 The RT-microkernel defines a RT-Semaphore Descriptor data structure that have the following

fields and data type definition:

struct MRT_sem_s {
 int index; /* semaphore ID */
 int value; /* semaphore Value */
 priority_t priority; /* Ceiling priority - for future uses */
 unsigned int flags; /* semaphore policy flags */
 int owner; /* semaphore owner */
 long ups; /* # of sem up() calls */
 long downs; /* # of sem down() calls */
 MRT_proc_t *carrier; /* the process that locked mutex semaphore */
 link_t alloclk; /* Allocated list link */
 link_t locklk; /* Locked list link */
 char name[MAXPNAME]; /* name of the semaphore */
 plist_t plist; /* Priority List of waiting process */
 };
typedef struct MRT_sem_s MRT_sem_t;

o index: Identifies the Semaphore Descriptor into the System Semaphore Pool.

o value: The semaphore value that can be set by the mrt_semalloc() System Call. It is

increased by one for each mrt_semup() System Call or MRT_semup() RT-Kernel

Call. It is decreased by one for each mrt_semdown() System Call or MRT_semdown()

RT-Kernel Call.

o priority: The ceiling priority used by the Priority Ceiling Protocol and the

Semaphore Inheritance Protocol not implemented in the current version.

o flags: RT-Semaphore policy flags. It is an OR of the following bits:

- SEM_PRTYORDER: If it is set the waiting RT-processes will be woken up in

priority order, otherwise they will be woken up in First Come First Served

(FCFS) order.

- SEM_MUTEX: If it is set the RT-Semaphore will be used as a mutex,

otherwise it will be a counting RT-semaphore.

- SEM_PRTYINHERIT: If it is set the RT-kernel applies the Basic Priority

Inheritance Protocol to RT-Semaphore operations. This option is valid only if

the SEM_PRTYORDER and the SEM_MUTEX bits are set.

o owner: The process which makes the mrt_semalloc() System Call.

o ups and downs: Statistical counters of MRT_semup() and MRT_semdown() RT-

kernel calls since the RT-Semaphore allocation.

o carrier: The process that has locked the mutex RT-Semaphore.

o alloclk: A data structure to build a linked list of allocated RT-Semaphores. It is also

used to insert/remove a RT-Semaphore into/from the Free list of the System

Semaphore Pool.

o locklk: A data structure to build a linked list of RT-Semaphores locked by a RT-

process.

o name: A name assigned to a RT-Semaphore.

o plist: A data structure to build a priority list of waiting RT-processes.

5.2 RT-Semaphore Userspace Data Structure

MINIX4RT defines several Userspace Data Structures to operate on RT-Semaphores as is described

in the following sections.

5.2.1 RT-Semaphore Attributtes Data Structure

The fields of RT-Semaphore Attributtes data structure have the same meanings of the RT-

Semaphore Descriptor data structure. It is used by the mrt_semalloc() and the mrt_semattr() system

calls.

struct mrt_semattr_s {
 int value; /* semaphore Value */
 unsigned int flags; /* semaphore policy/status flags */
 priority_t priority; /* Ceiling priority - for future uses */
 char name[MAXPNAME]; /* name of the semaphore */
 };
typedef struct mrt_semattr_s mrt_semattr_t;

5.2.2 RT-Semaphore Statistics Data Structure

This data structure is used to get RT-Semaphore statistics. It is used by the mrt_semstat() system

call.

struct mrt_semstat_s {
 long ups; /* total # of sem up() calls */
 long downs; /* total # of sem down() calls */
 int maxinQ; /* maximun # of process enqueued */
 };
typedef struct mrt_semstat_s mrt_semstat_t;

o ups and downs: Statistical counters of mrt_semup() and mrt_semdown() system calls

since the RT-Semaphore allocation.

o maxinQ: The maximun number of waiting RT-processes enqueued into the RT-

Semaphore list.

5.2.3 RT-Semaphore Internal Data Structure

This data structure is used to get the internal status of a RT-Semaphore. It is used by the

mrt_semint() system call.

struct mrt_semint_s {
 int index; /* semaphore ID */
 int owner; /* semaphore owner */
 int inQ; /* # of process enqueued */
 };
typedef struct mrt_semint_s mrt_semint_t;

o index: Identifies the Semaphore Descriptor into the System Semaphore Pool.

o owner: The process which makes the mrt_semalloc() System Call.

5.2.4 RT-Semaphore Down Data Structure

This data structure is used by the mrt_semdown() Kernel Call.

struct mrt_down_s {
 int index; /* semaphore ID */
 lcounter_t timeout; /* timeout in ticks */
 };
typedef struct mrt_down_s mrt_down_t;

o index: The identification of the RT-Semaphore.

o timeout: A timeout in Timer ticks can be specified to wait for the request RT-

Semaphore.

5.3 RT-Semaphore Waiting RT-Processes Priority List

To manage the waiting RT-Processes on a RT-Semaphore, the RT-kernel uses a Priority List Data

Structure (see Figure 1):

On insertion operations, the priority-th bit in the bitmap is set and the Process Descriptor is

appended to the Priority List in accordance with its priority field.

Finding the highest priority RT-process into the priority list is therefore only a matter of finding the

more most significant bit set into the bitmap. Because the number of priorities is fixed, the time to

complete a search is constant and unaffected by the number of RT-processes into the Priority List.

Figure 1: RT-Semaphore Waiting RT-Processes Priority List

6 RT-SEMAPHORE KERNEL CALLS

In many RT-applications, there are resources that must be shared among processes in a way that

prevents more than one process from using the resource at the same time (mutual exclusion).

The Unbounded Priority Inversion problem is an unwanted situation where a higher priority process

waits for a semaphore locked by a lower priority process and a medium priority process preempt it

delaying the semaphore release and therefore the high priority process execution.

There has been developed many mechanisms to avoid it. Sha, Rajkumar and Lehosky [7] suggest

two protocols to avoid the Unbounded Priority Inversion problem. The are the Basic Priority

Inheritance Protocol (BPIP) and the Priority Ceiling Protocol (PCP).

Under the BPIP, if a lower priority process blocks a higher priority process, the lower priority

process inherits the priority of the higher priority process for the duration of its critical section. The

BPIP potentially requires priorities to be modified when processes try to lock a locked semaphore.

The process that have locked the requested semaphore may inherit the higher priority among the

petitioner’s priorities. To achieve the correct behavior and be compliance with BPIP, priority

inheritance needs to be a transitive operation. Therefore, the RT-kernel must search across the chain

of petitioner processes to apply the priority inheritance until it finds the process that has no pending

requests. MINIX4RT provides RT-Semaphore primitives that are compliance with the BPIP

offering a deterministic timing behavior.

6.1 mrt_semdown() Kernel Call

The mrt_semdown() Kernel Call decrease the semaphore's count by one. If the resulting semaphore

value drops below zero, the caller process will block and its descriptor is inserted into the RT-

Semaphore Waiting RT-Processes Priority List.

For RT-Semaphores used as mutexes, the process that has locked the RT-semaphore increase its

priority to the caller’s priority, if it is higher than its owns. If that RT-process is blocked waiting for

another RT-semaphore, the Priority Inheritance Protocol is applied to all RT-process in the chain.

A timeout in Timer ticks can be specified to wait for the RT-Semaphore release. A special value of

MRT_NOWAIT can be specified to return without waiting if the RT-semaphore is locked by other

RT-process. To wait until the RT-Semaphore release, MRT_FOREVER must be specified as

timeout. On timeout expiration:

The RT-process descriptor is removed from RT-Semaphore Waiting RT-Processes Priority List.

The caller is unblocked returning and E_MRT_TIMEOUT error code.

For RT-Semaphores used as mutexes, the priority of the RT-process that had locked the RT-

Semaphore is set to the highest priority waiting process into RT-Semaphore Waiting RT-Processes

Priority List or its base priority specified in the MRT_setpattr() System Call.

6.2 mrt_semup() Kernel Call

If the semaphore value is lower than zero, its absolute value indicates the number of waiting RT-

process blocked trying to down the semaphore. The mrt_semup() Kernel Call increases the

semaphore's count by one, removes the highest priority process (if the SEM_PRTYORDER bit is set

in flags) or the first process into RT-Semaphore Waiting RT-Processes Priority List and unblocks it.

For RT-Semaphores used as mutexes, if the BPIP had raised the caller’s priority when it locked the

semaphore, its priority is returned to it base priority specified in the MRT_setpattr() System Call.

7 PERFORMANCE EVALUATION

This section describes the tests performed on MINIX4RT Semaphores and their results. The RT-

Semaphore operations performance was tested with four kinds of system setups/policies (see Table

1), with and without timeout settings, with and without applying BPIP. The tests consist in 10000

rounds of the Producer/Consumer algorithm (two down operations and two ups operations per

process per round).

Table 1: Setups and Policies of Semaphore Operations Performance Tests

Test Name With Timeout Priority List/FIFO Priority Inheritance

TEST1 No Priority List No BPIP

TEST2 Yes Priority List No BPIP

TEST3 No Priority List BPIP

TEST4 Yes Priority List BPIP

The tests were performed under different kinds of loads on the tested system (see Figure 2):

1. Without Load (NOLoad): All unneeded processes are killed before the test.

2. CPU Load(CPULoad): A NRT-script loads the CPU without any I/O operation.

3. I/O Disk Load(HDLoad): A NRT-process access files on the hard disk.

4. I/O RS232e Load (RSLoad): A NRT-file transfer over the serial port at 19200 Kbps.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

TEST1 TEST2 TEST3 TEST4

[m
ic
ro
s
e
c
s
]

NOLoad

CPUload

HDload

RSload

Figure 2: Down-Up pair processing time.

Table 2 presents Down-Up pair processing processing times.

Table 2: Down-Up Pair Processing Times [µµµµs]

 TEST1 TEST2 TEST3 TEST4

NOLoad 53,42 56,25 53,52 55,75

CPUload 54,02 55,67 53,57 55,67

HDload 54,05 55,65 53,57 55,57

RSload 54,45 56,42 54,32 56,45

All the tests were carried on with the Programmable Interval Timer was set up at 1000[Hz]. This

fact implies the execution of the Timer Interrupt Service Routing 1000 times by second adding an

significative overhead to the measurements, but presents a more realistic scenario. Other tests

performed on MINIX4RT showed an average Timer Interrupt Service Time of 32[µs].

The equipment used for the tests was an IBM Model 370C Notebook, Intel® DX4 75 MHz, AT

Bus, Memory 8 MB, and MINIX4RT (Kernel 12052007). In spite of the equipment is quite old , it

allows performance comparisons against reports of other systems with similar hardware.

Sacha [8] reports QNX signal times about 40-45[µs] on a 486/66 MHz. His results show the same

order of magnitud than the tests results on MINIX4RT considering that they include down time plus

up time and the CPU clock difference.

8 CONCLUSIONS AND FUTURE WORKS

MINIX has proved to be a feasible testbed for OS development and extensions that could be easily

added to it. In a similar way, MINIX4RT has an architecture that can be used as a starting point for

adding RT-services. In spite of it was designed for an academic environment, it can be optimized

for production systems even in embedded systems. MINIX4RT combines Hard Real-Time with the

standard MINIX platform so time sensitive control algorithms can operate together with

background processing without worrying about interference.

MINIX4RT algorithms were developed to minimize priority inversion to meet applications with

strict timing constrains. A sample of that is the use of Priority Lists and the use of the Basic Priority

Inheritance Protocol.

The RT-microkernel has basic features as Interrupt Management, Process Management, Time

Management, RT-IPC and Statistics gathering making it a good choice to conduct coding

experiences in Real-Time Operating Systems courses.

Near future works on MINIX4RT are:

- Operating System Profiling: Runtime profiling is a key technique to prove new

concepts, debug problems, and optimize performance.

- Port Real-time to MINIX3: The current version of MINIX has a more strict compliance

with a Client/Server microkernel based Opertating System. That changes cause the need of

rewrite some components of MINIX4RT code to able to run under MINIX3.

REFERENCES

[1] Pessolani, Pablo A, “RT-MINIXv2: Architecture and Interrupt Handling”, 5
th
 Argentine

Symposium on Computing Technology, 2004.

[2] Pessolani, Pablo A., “RT-MINIXv2: Real-Time Process Management and Scheduling”, 6
th

Argentine Symposium on Computing Technology, 2005.

[3] Tanenbaum Andrew S., Woodhull Albert S., “Sistemas Operativos: Diseño e Implementación”

2da Edición, ISBN 9701701658, Editorial Prentice-Hall , 1999.

[4] Pessolani, Pablo A., “MINIX4RT: Time Management and Timer Facilities”, 7
th
 Argentine

Symposium on Computing Technology, 2006.

[5] Pessolani, Pablo A., “MINIX4RT: Real-Time Interprocess Communications Facilities”,

Workshop de Arquitecturas, Redes y Sistemas Operativos, XII Congreso Argentino de Ciencias

de la Computación, 2006.

[6] Mark W. Borger, Ragunathan Rajkumar. “Implementing Priority Inheritance Algorithms in an

Ada Runtime System”, Technical Remailbox . CMU/SEI-89-TR-15. ESD-TR-89-23. Software

Engineering Institute Carnegie Mellon University, 1989.

[7] Sha, L., Lehoczky, J.P., and Rajkumar, R. “Priority Inheritance Protocols: An Approach to

Real-Time Synchronization”. Tech. Rept. CMU-CS-87-181, Carnegie Mellon University,

Computer Science Department, 1987.

[8] Krzysztof M. Sacha, “Measuring the Real-Time Operating System Performance”, Institute of

Control and Computation Engineering, Warsaw University of Technology, Poland, 1995.

